
 1

Evaluation of Advanced TCP Stacks on Fast Long-
Distance Production Networks

Hadrien Bullot

School of Computer & Communication Sciences
Swiss Federal Institute of Technology, Lausanne

hadrien.bullot@epfl.ch

R. Les Cottrell
Stanford Linear Accelerator Center
Stanford University, Menlo Park

cottrell@slac.stanford.edu

Richard Hughes-Jones
Department of Physics and Astronomy

The University of Manchester, Manchester
R.Hughes-Jones@man.ac.uk

Abstract1
With the growing needs of data intensive science,
such as High Energy Physics, and the need to share
data between multiple remote computer and data
centers worldwide, the necessity for high network
performance to replicate large volumes (TBytes) of
data between remote sites in Europe, Japan and the
U.S. is imperative. Currently, most production bulk-
data replication on the network utilizes multiple
parallel standard (Reno based) TCP streams.
Optimizing the window sizes and number of parallel
stream is time consuming, complex, and varies (in
some cases hour by hour) depending on network
configurations and loads. We therefore evaluated
new advanced TCP stacks that do not require
multiple parallel streams while giving good
performances on high speed long-distance network
paths. In this paper, we report measurements made
on real production networks with various TCP
implementations on paths with different Round Trip
Times (RTT) using both optimal and sub-optimal
window sizes.

We compared the New Reno TCP with the
following stacks: HS-TCP, Fast TCP, S-TCP,
HSTCP-LP, H-TCP and Bic-TCP. The analysis will
compare and report on the stacks in terms of
achievable throughput, impact on RTT, intra- and
inter-protocol fairness, stability, as well as the
impact of reverse traffic.

1 This work was supported in part by the Director, Office of
Science, Office of Advanced Scientific Computing
Research, Mathematical, Information, and Computational
Sciences Division under the U.S. Department of Energy;
and part by the UK e-Science Initiative though the Particle
Physics & Astronomy Research Council.The SLAC work is
under Contract No. DE-AC03-76SF00515.

We also report on some tentative results from tests
made on unloaded 10Gbps paths during
SuperComputing 2003.

1 Introduction
With the huge amounts of data gathered in fields
such as High Energy and Nuclear Physics (HENP),
Astronomy, Bioinformatics, Earth Sciences, and
Fusion, scientists are facing unprecedented
challenges in managing, processing, analyzing and
transferring the data between major sites like major
research sites in Europe and North America that are
separated by long distances. Fortunately, the rapid
evolution of high-speed networks is enabling the
development of data-grids and super-computing
that, in turn, enable sharing vast amounts of data
and computing power. Tools built on TCP, such as
bbcp [11], bbftp [4] and GridFTP [1] are
increasingly being used by applications that need to
move large amounts of data.

The standard TCP (Transmission Control Protocol)
has performed remarkably well and is generally
known for having prevented severe congestion as
the Internet scaled up. It is well-known that the
current version of TCP - which relies on the Reno
congestion avoidance algorithm to measure the
capacity of a network - is not appropriate for high
speed long-distance networks. The need to
acknowledge packets sets a limit for the throughput
for Reno TCP to be a function of 1/RTT where
RTT is the Round Trip Time. For example, with
1500-Byte packets and a 100ms RTT, it would
require an average congestion window of 83,333
segments and a packet drop rate of at most one
congestion event every 5,000,000,000 packets to
achieve a steady-state throughput of 10Gbps (or

 2

equivalently, at most one congestion event every
100 minutes)[8]. This loss rate is typically below
what is possible today with optical fibers.

Today the major approach to improve the
performance of TCP is that of adjusting the TCP
window size to the bandwidth (or more accurately
the bitrate) * delay (RTT) product (BDP) of the
network path, and using parallel TCP streams.

In this paper, we will analyze the performance and
the fairness of various new TCP stacks. We ran tests
in 3 network configurations: short distance, middle
distance and long distance. With these different
network conditions, our goal is to find a protocol
that is easy to configure, that provides optimum
throughput, that is network friendly to other users,
and that is responsive to changes in available
bitrates. We tested 7 different TCP stacks (see
section 2 for a brief description of each): P-TCP, S-
TCP, Fast TCP, HS-TCP, HSTCP-LP, H-TCP and
Bic-TCP. The main aim of this paper is to compare
and validate how well the various TCPs work in real
high-speed production networks.

Section 2 describes the specifications of each
advanced protocol we tested. Section 3 explains
how we made the measurements. Section 4 shows
how each protocol: affects the RTT and CPU loads,
and behaves with respect to the txqueuelen (the
number of packets queued up by the IP layer for the
Network Interface Card (NIC)). This section also
shows: how much throughput each protocol can
achieve; how responsive is each protocol in the face
of “stiff” sinusoidally varying UDP traffic; and the
stability of each protocol. Section 5 moves on to
consider the effects of cross-traffic on each
protocol. We consider both cross-traffic from the
same protocol (intra-protocol) and a different
protocol (inter-protocol). We also look at the effects
of the reverse traffic on the protocols. Section 6
reports on some tentative results from tests made
during SuperComputing 20003 (SC03). Section 7
talks about possible future measurements and
section 8 provides the conclusion.

2 The advanced stacks
We selected the following TCP stacks according to
two criteria in order to achieve high throughput on
long distance:

Software change Since most data-
intensive science sites such as SLAC are
end-users of networks - with no control
over the routers or infrastructure of the
wide area network - we required that any

changes needed would only apply to the
end-hosts. Thus, for standard production
networks, protocols like XCP [15] (router
assisted protocol) or Jumbo Frame (e.g.
MTU=9000) are excluded. Furthermore,
since SLAC is a major generator and
distributor of data, we wanted a solution
that only required changes to the sender
end of a transfer. Consequently we
eliminated protocols like Dynamic Right
Sizing [5], which required a modification
on the receiver’s side.

TCP improvement Given the existing
software infrastructure based on file
transfer applications such as bbftp, bbcp
and GridFTP that are based on TCP, and
TCP’s success in scaling up to the Gbps
range [6], we restricted our evaluations to
implementations of the TCP protocol. Rate
based protocols like SABUL [9] and
Tsunami [21] or storage based protocols
such as iSCSI or Fiber Channel over IP are
currently out of scope.

We call advanced stacks the set of protocols
presented below, except the first (TCP Reno). All of
these stacks are improvements of TCP Reno apart
from Fast TCP that is an evolution from TCP
Vegas. All the stacks only require to be used on the
sender’s side. Further all the advanced stacks run on
GNU/Linux.

2.1 Reno TCP
TCP’s congestion management is composed of two
major algorithms: the slow-start and congestion
avoidance algorithms which allow TCP to increase
the data transmission rate without overwhelming the
network. Standard TCP cannot inject more than
cwnd (congestion window) segments of
unacknowledged data into the network. TCP Reno’s
congestion avoidance mechanism is referred to as
AIMD (Additive Increase Multiplicative Decrease).
In the congestion avoidance phase TCP Reno
increases cwnd by one packet per packet of data
acknowledged and halves cwnd for every window
of data containing a packet drop. Hence the
following equations:

Slow-Start

 c old new :ACK cwndcwnd += (1)

 3

Congestion Avoidance

old

a
old new :ACK

cwnd
cwndcwnd += (2)

cwndcwndcwnd old bold new : DROP *−= (3)

Where a = 1, b = 0.5, c = 1.

2.2 P-TCP
After tests with varying maximum window sizes
and numbers of streams, from SLAC to many sites,
we observed that using the TCP Reno protocol with
16 streams and an appropriate window size
(typically the number of streams * window size ~
BDP) was a reasonable compromise for medium
and long network distance paths. Since today
physicists are typically using TCP Reno with
multiple parallel streams to achieve high
throughputs, we use this number of streams as a
base for the comparisons with other protocols.
However:

• It may be over-aggressive and unfair
• The optimum number of parallel streams

can vary significantly with changes (e,g,
routes) or utilization of the networks.

To be effective for high performance throughput,
the best new advanced protocols, while using a
single stream, need to provide similar performance
to P-TCP (parallel TCP Reno) and in addition, they
should have better fairness than P-TCP.

For this implementation, we used the latest
GNU/Linux kernel available (2.4.22) which
includes SACK and New Reno. This
implementation still has the AIMD mechanism
shown in (2) and (3).

2.3 S-TCP
Scalable TCP changes the traditional TCP Reno
congestion control algorithm: instead of using
Additive Increase, the increase is exponential and
the Multiplicative Decrease factor b is set to 0.125.
It was described by Tom Kelly in [16].

2.4 Fast TCP
The Fast TCP protocol is the only protocol which is
based on Vegas TCP instead of Reno TCP. It uses
both queuing delay and packet loss as congestion
measures. It was introduced by Steven Low and his
group at Caltech in [14] and demonstrated during
SC2002 [13]. It reduces massive losses using pacing

at sender and converges rapidly to an equilibrium
value.

2.5 HS-TCP
The HighSpeed TCP was introduced by Sally Floyd
in [7] and [8] as a modification of TCP’s congestion
control mechanism to improve the performance of
TCP in fast, long delay networks. This modification
is designed to behave like Reno for small values of
cwnd, but above a chosen value of cwnd a more
aggressive response function is used. When cwnd is
large (greater than 38 packets), the modification
uses a table to indicate by how much the congestion
window should be increased when an ACK is
received, and it releases less network bandwidth
than 1/2 cwnd on packet loss. We were aware of
two versions of High-Speed TCP: Li [18] and
Dunigan [3]. Apart from the SC03 measurements,
we chose to test the stack developed by Tom
Dunigan which was included in the Web1002

 patch.

2.6 HSTCP-LP
The aim of this modification, that is based on TCP-
LP [17], is to utilize only the excess network
bandwidth left unused by other flows. By giving a
strict higher priority to all non-HSTCP-LP cross-
traffic flows, the modification enables a simple two-
class prioritization without any support from the
network. HSTCP-LP was implemented by merging
together HS-TCP and TCP-LP.

2.7 H-TCP
This modification has a similar approach to High-
Speed TCP since H-TCP switches to the advanced
mode after it has reached a threshold. Instead of
using a table like HS-TCP, H-TCP uses an
heterogeneous AIMD algorithm described in [24].

2.8 Bic-TCP
In [26], the authors introduce a new protocol whose
objective is to correct the RTT unfairness of
Scalable TCP and HS-TCP. The protocol uses an
additive increase and a binary search increase.
When the congestion window is large, additive
increase with a large increment ensures linear RTT
fairness as well as good scalability. Under small
congestion windows, binary search increase is
designed to provide TCP friendliness.

2 http://www.web100.org

 4

2.9 Westwood+ TCP
This protocol continuously estimates the packet rate
of the connection by monitoring the ACK reception
rate. The estimated connection rate is then used to
compute congestion window and slow start
threshold settings after a timeout or three duplicate
ACKs. This protocol was described in [20].

2.10 GridDT
This protocol allows the users to tune AIMD
parameters which can reproduce the behavior of a
multi-stream transfer with a single stream and can
virtually increase the MTU as described in [22].
Due to some time delay in the kernel availability,
we were unable to test Westwood+ TCP and
GridDT. We hope to test and report on them in a
future paper.

3 Measurements
Each test was run for 20 minutes from SLAC to
three different networks: Caltech for short-distance
(RTT of 10 ms), University of Florida for middle
distance (RTT of 70 ms) and University of
Manchester for long-distance (RTT of 170 ms). We
duplicated some tests to DataTAG3

 Chicago (RTT
of 70 ms) and DataTAG CERN (RTT of 170 ms) in
order to see if our tests were coherent.

The throughputs on these production links go from
400 Mbps to 600 Mbps which was the maximum we
could reach because of the OC12 (622 Mbps) links
to ESnet and CENIC at SLAC. The route for
Caltech uses CENIC from SLAC to Caltech and the
bottleneck capacity for most of the tests was 622
Mbps. The route used for University of Florida
(UFL) was CENIC and Abilene and the bottleneck
capacity was 467 Mbps at UFL. The route to CERN
was via ESnet and Starlight and the bottleneck
capacity was 622 Mbps at SLAC. The route used
for University of Manchester is ESnet then Geant
and JANET.

At the sender side, we used three machines:
Machine 1 runs ping.
Machine 2 runs Advanced TCP.
Machine 3 runs Advanced TCP for cross-traffic or
UDP traffic.

Machines 2 and 3 had 3.06GHz dual-processor
Xeons with 1 GB of memory, a 533MHz front side
bus and an Intel Gigabit Ethernet (GE) interface.

3 Research & Technological Development for a
TransAtlantic Grid: http://datatag.web.cern.ch/datatag/

Due to difficulties concerning the availability of
hosts at the receiving sites, we usually used only
two servers on the receiver’s side (Machines 1 and
2 at the sender side send data to the same machine
at the receiver side).

After various tests, we decided to run ping and
iperf in separate machines. With this configuration
we had no packet loss for ping during the tests.

We used a modified version of iperf4

 in order to
test the advanced protocol in a heterogeneous
environment. Following an idea described by
Hacker [10], we modified iperf to be able to send
UDP traffic with a sinusoidal variation of the
throughput. We used this to see how well each
advanced TCP stack was able to adjust to the
varying “stiff” UDP traffic. The amplitude of the
UDP stream varied from 5% to 20% of the
bandwidth with periods of 60 seconds and 30
seconds. Both the amplitude and period could be
specified.

We ran iperf (TCP and UDP flows) with a report
interval of 5 seconds. For the ICMP traffic the
interval, that was used by the traditional ping
program, is of the same order as the RTT in order to
gain some granularity in the results. The tests were
run mostly during the weekend and the night in
order to reduce the impact on other traffic.

On the sender’s side, we used the different kernels
patched for the advanced TCP stacks. The different
kernels are based on vanilla GNU/Linux 2.4.19
 through GNU/Linux 2.4.22. The TCP source code
of the vanilla kernels is nearly identical. On the
receiver’s side we used a standard Linux kernel
without any patch in the TCP stack.

For each test we computed different values:
throughput average and standard deviation, RTT
average and standard deviation, stability and
fairness index. The stability index helps us find out
how the advanced stack evolves in a network with
rapidly varying available bandwidth.

With iperf, we can specify the maximum window
size the congestion window can reach. The optimal
window sizes according the bandwidth delay
product are about 500KBytes for the short distance
path, about 3.5MBytes for the medium distance path
and about 10MBytes for the long distance path. We
used 3 main window sizes for each path in order to
try and bracket the optimum in each case: for the

4 http://dast.nlanr.net/Projects/Iperf/

 5

short-distance we used 256KBytes, 512KBytes and
1024KBytes; for the middle distance we used

1MBytes, 4MBytes and 8MBytes; and for the long-
distance we used 4MByte, 8MByte and 12MByte

 TCP

Reno
P-TCP S-TCP Fast TCP HS-TCP Bic-TCP H TCP HSTCP-LP

Caltech 256KB 238+-15 395+-33 226+-14 233+-13 225+-17 238+-16 233+-25 236+-18
Caltech 512KB 361+-44 412+-18 378+-41 409+-27 307+-31 372+-35 338+-48 374+-51
Caltech 1MB 374+-53 434+-17 429+-58 413+-58 284+-37 382+-41 373+-34 381+-51
UFL 1MB 129+-26 451+-32 109+-18 136+-12 136+-15 134+-13 140+-14 141+-18
UFL 4MB 294+-110 428+-71 300+-108 339+-101 431+-91 387+-52 348+-76 382+-120
UFL 8MB 274+-115 441+-52 281+-117 348+-96 387+-95 404+-34 351+-56 356+-118
Manchester 4MB 97+-38 268+-94 170+-20 163+-33 171+-15 165+-26 172+-13 87+-61
Manchester 8MB 78+-41 232+-74 320+-65 282+-113 330+-52 277+-92 323+-64 118+-111
Manchester 12MB 182+-66 212+-83 459+-71 262+-195 368+-161 416+-100 439+-129 94+-113
Avg. thru Size 1 154 371 178 177 177 179 185 155
Avg. thru Size 2 244 357 384 343 356 345 336 292
Avg. thru Size 3 277 362 422 341 346 367 388 277
Avg. thru size 2 & 3 261 360 403 342 351 356 362 294
Std. dev. size 2 & 3 113 107 49 53 54 49 41 125

Table 1: Iperf TCP throughputs for various TCP stacks for different window sizes, averaged over the three
different network path lengths.

maximum windows. In this paper, we refer to these
three different window sizes for each distance as:
size 1, 2 and 3.

4 Results
In this section, we present the essential points and
the analysis of our results. The whole data are
available on our website5.

4.1 RTT
All advanced TCP stacks are “ fair” with respect to
the RTT (i.e. do not dramatically increase RTT)
except for P-TCP Reno. On the short distance, the
RTT of P-TCP Reno increases from 10 ms to 200
ms. On the medium and long distances, the
variation is much less noticeable and the difference
in the average RTTs between the stacks is typically
less than 10ms.

For the other advanced stacks the RTT remains the
same except with the biggest window size we
noticed, in general, a small increase of the RTT.

4.2 CPU load
We ran our tests with the time command in order to
see how each protocol used the cpu resource of the
machine on the sender’s side. The MHz/Mbps
utilization averaged over all stacks, for all distances
and all windows was 0.93+-0.08 MHz/Mbps. The
MHz/Mbps averaged over all distances and window
sizes varied from 0.8+-0.35 for S-TCP to 1.0+-0.2

5 http://www-iepm.slac.stanford.edu/bw/tcp-eval/

for Fast. We observed no significant difference in
sender side CPU load between the various
protocols.

4.3 txqueuelen
In the GNU/Linux 2.4 kernel, the txqueuelen
enables us to regulate the size of the queue between
the kernel and the Ethernet layer. It is well-known
that the size of the txqueuelen for the NIC can
change the throughput but we have to use some
optimal tuning. Some previous tests [19] were made
by Li. Although use of a large txqueuelen can
result in a large increase of the throughput with TCP
flows and a decrease of sendstall, Li observed an
increase of duplicate ACKs.

Scalable TCP by default used a txqueuelen of 2000
but all the others use 100. Thus, we tested the
various protocols with txqueuelen sizes of 100,
2000 and 10000 in order to see how this parameter
could change the throughput. In general, the
advanced TCPs perform better with a txqueuelen
of 100 except for S-TCP which performs better with
2000. With the largest txqueuelen, we observe
more instability in the throughput.

4.4 Throughput
Table 1 and Figure 1 show the iperf TCP
throughputs averaged over all the 5 seconds
intervals for each 1200 second measurement
(henceforth referred to as the 1200 second average)
for the various stacks, network distances and
window sizes. Also shown are the averages of the
1200 second averages for the three network

 6

distances for each window size. Since the smallest
window sizes were unable to achieve the optimal
throughputs, we also provide the averages of the
1200 second averages for sizes 2 and 3.

Figure 1: Average of the 1200 second averages for
maximum window sizes 2 and 3 shown for three
network distances and various TCP stacks. The y
axis is the throughput achieved in Mbps.

• With the smallest maximum window sizes
(size 1) we were unable to achieve optimal
throughputs except when using P-TCP.

• Depending on the paths, we could achieve
throughputs varying from 300 to 500
Mbps.

• There are more differences in the protocol
achievable throughputs for the longer
distances.

• For the long distance (Manchester), the
BDP predicts an optimum window size
closer to 12MBytes than 8Mbytes. As a
result S-TCP, H-TCP, Bic-TCP and HS-
TCP perform best for the Manchester path
with the 12MByte maximum window size.

• The top throughput performer for window
sizes 2 and 3 was Scalable-TCP, followed
by (roughly equal) Bic-TCP, Fast TCP, H-
TCP, P-TCP and HS-TCP, with HSTCP-
LP and Reno single stream bringing up the
rear.

• The poor performance of Reno single
stream is to be expected due to its AIMD
congestion avoidance behavior.

• Since HSTCP-LP deliberately backs off
early to provide a lower priority, it is not
unexpected that it will perform less well
than other more aggressive protocols.

• P-TCP performs well at the short and
medium distances, but less well on the
long-distance path, possibly since the
windows*streams product was >> the
BDP.

It needs to be noted that the standard deviations of
these averages are sufficiently large that the
ordering should only be regarded as a general
guideline.

4.5 Sinusoidal UDP
The throughput of a protocol is not sufficient to
describe its performance. Thus, we analyzed how
the protocol behaves when competing with a UDP
stream varying in a sinusoidal manner. The purpose
of this stream is to emulate the variable behavior of
the background cross-traffic. Our results show that
in general, all protocols converge quickly to follow
the changes in the available bandwidth and maintain
a roughly constant aggregate throughput - especially
for Bic-TCP. Fast TCP, and P-TCP to a lesser
extent have, some stability problems on long-
distance and become unstable with the largest
window size. Figure 2 shows an example of the
variation of Bic-TCP in the presence of sinusoidal
UDP traffic.

Figure 2: Bic-TCP with sinusoidal UDP traffic.

4.6 Stability
We compute the stability index as the standard
deviation normalized by the average throughput. If

 7

we have few oscillations in the throughput, we will
have a stability index close to zero.

Without the UDP cross-traffic, all stacks have better
stability indices (factor of 1.5 to 4 times better) with
the smallest window sizes. S-TCP has the best
stability (index ~ 0.1) for the optimal and larger
than optimal window sizes, this is followed closely
by H-TCP, Bic-TCP and HS-TCP. Single stream
Reno and HSTCP-LP have poorer stabilities (> 0.3).

Figure 3: Stability index averaged over the optimal
and largest window sizes and the 3 different
network path lengths.

With the sinusoidal UDP traffic, better stability is
achieved once again with the smallest window
sizes. For the other window sizes there is little
difference (0.01) between the two UDP-frequency
stabilities for a given stack. The throughputs with
the UDP cross-traffic are generally larger (15%)
than those without the UDP cross-traffic. Bic-TCP
closely followed by the two more aggressive
protocols, P-TCP and Scalable-TCP, have the best
stability indices (< 0.2). H-TCP and HS-TCP have
stability indices typically > 0.2 and Fast TCP and
HSTCP-LP have stability indices > 0.3. We noticed
that, in general, the protocols are more stable with
the largest window (size 3) than with the optimal
window (size 2).

5 Cross-traffic

5.1 Intra-protocol fairness
The cross-traffic tests are important and help us to
understand how fair a protocol is. At our research
centers, we wanted to know not only the fairness of
each advanced protocol against TCP Reno, but also
how fairly the protocols behave towards each other.
It is important to see how the different protocols
compete with one another since the protocol that

our research centers will adopt shortly must coexist
harmoniously with existing protocols and with
advanced protocols chosen by other sites. Of course,
we cannot avoid a future protocol being unfair only
with our chosen one. In this paper we consider a fair
share per link metric. If there are n f lows through a
bottleneck link, each flow will take 1/n of the
capacity of the bottleneck link. We measure the
average bandwidth xi of each source i during the test
then we compute the fairness index as described in
[2] by Jain et al.:

A fairness index of 1 corresponds to a perfect
allocation of the throughput between all protocols.

There are other definitions of the concept of
fairness. For example, in [25] the authors describe
and extend the concept of “Fa fairness” . However,
we chose to use the definitions of Chiu and Jain
which are the ones mainly used in the networking
literature concerning a simple model of a single
bottleneck.

The intra-protocol fairness is the fairness between
two flows of the same protocol. Each flow is sent
from a different sending host to a different receiving
host.

In general, all the protocols have a good intra-
fairness (F � 0.98) except HS-TCP (F � 0.94) on
the middle distance, and P-TCP, H-TCP and
HSTCP-LP on the long-distance with window sizes
greater than the optimal. We noticed that on the
middle distance, the two HS-TCP flows will switch
with one another instead of maintaining a constant
share of the bandwidth. The first f low will decrease
after a certain time and leave the available
bandwidth to the second flow. As a result, we
observe a large instability in these HS-TCP flows.
We do not notice this HS-TCP behavior on the
short-distance path.

5.2 Inter-protocol fairness
For the inter-protocol fairness we sent two different
flows on the link from two different machines. The
aim of this experience was to see how each protocol
behaves with a competing protocol. We desired that
the protocol would neither be too aggressive nor too
gentle (non-aggressive) towards the other protocols.
The fairness computation described earlier does not
tell us how aggressive or gentle the protocol is, only
that it is not taking/getting a fair share of the

 8

achievable throughput. Hence we introduce the
following formula, which is the asymmetry between
two throughputs:

where x1 and x2 are the throughput averages of
streams 1 and 2 in the cross-traffic.

Table 2 shows the result of the cross-traffic between
different stacks. A value near one indicates that the
protocol is too aggressive towards the competing
protocol. A value near minus one indicates a too
gentle protocol. The optimal is to have a value near
0 that indicates that the protocol is fair against the
other protocols.

Our results show that Bic-TCP, Fast TCP, S-TCP
and H-TCP have small absolute values of the
fairness asymmetry. It is normal for HSTCP-LP to
be too gentle (and have a large negative value of the
asymmetry) since it uses only the remaining
bandwidth and is deliberately non-intrusive - thus
we removed it from our calculation of the average
asymmetry of the other protocols for the middle-
distance and long-distance. On the short-distance,
we can see that as expected P-TCP is very
aggressive - thus, we do not include P-TCP in the
average asymmetry of the other protocols for the
short-distance - and that the other advanced TCP
stacks compete like a single stream of Reno. Only
Bic-TCP is sufficiently aggressive to compete with
P-TCP in this case, but it appears too aggressive for
the other protocols. Our results show that S-TCP,
which is very aggressive in short-distance, becomes
quite gentle in the long-distance. On the other hand,
H-TCP, which is gentle in the short and middle
distances, becomes aggressive in long-distance. HS-
TCP, as expected, is too gentle in our tests.

5.3 Reverse-traffic
Reverse-traffic causes queuing on the reverse path.
This in turn can result in the ACKs being lost or
coming back in bursts (compressed ACKs). So, we
tested the protocols by sending TCP traffic from
SLAC to UFL using an advanced stack and from
UFL to SLAC using P-TCP with 16 streams.
Normally, the router, the path and the Ethernet card
are full-duplex and should not be affected by the
reverse-traffic but actually the reverse-traffic affects
the forward throughputs by its modification of the
ACK behavior. For example, HS-TCP never
reaches the limit at which the AIMD behavior
changes from Reno to HS. Also, our tests show that
Fast TCP - which is based on TCP Vegas that

measures RTT - is more heavily affected by heavy
reverse-traffic that affects (usually increases) the
reverse path delays and hence the RTTs. The net
effect is that, for the tested version of Fast TCP,
throughput is 4 to 8 times less than the other stacks.

6 10Gbps path tests
During SuperComputing 20036, we made some
tentative TCP performance measurements on
10Gbps links between hosts at the SLAC/FNAL
booth at the Phoenix convention center and a host at
the SLAC/Stanford Point of Presence at the Palo
Alto Internet eXchange (PAIX), a host at StarLight
in Chicago and a host at NIKHEF in Amsterdam.
Due to the short amount of time we had access to
these links (<3 days) and the emphasis on
demonstrating the maximum throughput for the
SC03 Bandwidth Challenge, these measurement are
necessarily incomplete, however some of the results
are felt to be worth reporting.

6.1 Setup
All the hosts at Phoenix and PAIX were Dell 2650s
with dual Xeon CPUs, a 533MHz front side bus,
and an Intel PRO/10GbE LR Network Interface
Card (NIC) plugged into the 133MHz 64 bit PCI-X
bus slot. There were 3 hosts at the SLAC/FNAL
booth at SC03, two with 3.06GHz CPUS, and the
third with 2.04GHz CPUs. The host at PAIX had
dual Xeon 3.06GHz CPUS, and a 10Gbps Ethernet
connection (LAN PHY at level 2) to a Cisco GSR
router in LA. From the GSR router the signal was
transmitted via an OC192/POS circuit to a Juniper
640 router managed by SCInet at the Phoenix
Convention Center. From the Juniper the path went
via a Force 10 E1200 router to the Cisco 6509 in the
SLAC/FNAL booth using a 10 Gbps Ethernet link.

The StarLight/Chicago path from the booth went
from the Cisco 6509 via a second 10 Gbps Ethernet
link to the Force 10 router and on through a second
Juniper router connected to the Abeline core at
10Gbps, and thence via Abilene routers at Los
Angeles, Sunnyvale, Kansas City, and Indianapolis
to Chicago. The host at StarLight was an HP
Integrity rx2600 (64 bit Itanium) system with dual
1.5GHz CPUs and 4GB RAM.

The Amsterdam path followed the same path to
StarLight and then had one extra hop over the
SURFnet 10 Gbps link to Amsterdam. The host at
Amsterdam was an HP Itanium/F10 at NIKHEF.

6 SC2003: http://www.sc-conference.org/sc2003/

 9

6.2 Methodology
We set up the sending hosts at SC03 with the
Caltech Fast TCP stack, and the DataTAG altAIMD
stack [28]. The latter allowed dynamic (without
reboot) selection of the standard Linux TCP stack
(New Reno with Fast re-transmit), the Manchester
University implementation of the High Speed TCP
(HS-TCP) and the Cambridge University Scalable
TCP stack (S-TCP). By default we set the
Maximum Transfer Unit (MTU) to 9000Bytes and
the transmit queue length (txqueuelen) to 2000
packets.

We started the first set of measurements at the same
time as our bandwidth challenge demonstration
(about 16:00 PST Wednesday 19th November

2003). The main emphasis at this time was to
achieve the maximum throughput, the evaluation of
different TCP stacks was a secondary goal. The
duration of the tests was about 60 minutes.

We started the second set of measurements just
before midnight on Wednesday 19th November.
These measurements were between Phoenix and
PAIX, Phoenix and Chicago (65ms RTT) and
Phoenix and Amsterdam (175ms). This was a
reasonably controlled set of measurements with no
Bandwidth Challenge in progress and little cross-
traffic. Each test was for 1200 seconds, with a given
stack, and fixed maximum window size. We
finished the second set of tests at about 07:00 PST
Thursday 20th November.

10 Gbits/s throughput from SC2003 to PAIX

0

1

2

3

4

5

6

7

8

9

10

11/19/03
15:59

11/19/03
16:13

11/19/03
16:27

11/19/03
16:42

11/19/03
16:56

11/19/03
17:11

11/19/03
17:25 Date & Time

T
hr
ou

gh
pu

t
G
bi
ts
/s

Router to LA/PAIX
Phoenix-PAIX HS-TCP
Phoenix-PAIX Scalable-TCP
Phoenix-PAIX Scalable-TCP #2

Figure 4: Points= TCP throughput from the SLAC/FANL booth to PAIX.
Smooth Curve= total SC2003 traffic on the link to LA, taken from the Juniper router.

10 Gbits/s throughput from SC2003 to Chicago & Amsterdam

0

1

2

3

4

5

6

7

8

9

10

11/19/03
15:59

11/19/03
16:13

11/19/03
16:27

11/19/03
16:42

11/19/03
16:56

11/19/03
17:11

11/19/03
17:25 Date & Time

T
hr
ou

gh
pu

t
G
bi
ts
/s

Router traffic to Abilele

Phoenix-Chicago

Phoenix-Amsterdam

Figure 5: Points= TCP throughput from the SLAC/FANL booth to Amsterdam and Chicago.
Smooth Curve= total SC2003 traffic on the Abilene access link, taken from the Juniper router.

 10

6.2.1 Tests made during the
Bandwidth Challenge

During the Bandwidth Challenge, TCP flows were
set up from the SLAC/FANL booth to PAIX,
Chicago and Amsterdam. They were generated
using iperf with an MTU of 9000 bytes and TCP
window sizes of 30, 60 and 200 Mbytes
respectively. Separate Dell machines at the booth,
running the DataTAG altAIMD stack, were used for
the flow to each remote location. Following other
work on PCI-X transactions [27], the PCI-X
parameter “maximum memory read byte count” ,
mmrbc, was set to 4096 bytes on both local are
remote machines. Setting mmrbc to the maximum
4096 bytes minimized the time taken for the packets
to cross the PCI-X bus and thus increased
throughput.

The flow to PAIX shared the SC2003-LA link with
traffic from the Caltech booth to nodes at LA. The
flows to Amsterdam and Chicago shared the 10
Gbps Ethernet link to the SCInet Force10 switch
and then shared the Abilene access link with other ~
1-2Gigabit traffic Bandwidth Challenge flows to US
sites.

The points in Figure 4 show the TCP user level
throughput (goodput) to the remote node in PAIX
and the solid line shows the total traffic from
SC2003 on the link to LA, taken from the link level
counters on the Juniper router. The first transfer
(16:00 – 16:40) used HS-TCP and initially the
observed throughput was 4.37 Gbps and extremely
stable, giving a Stability Index (standard deviation /
average throughput) of 0.5 %. After 16:12 the
throughput dropped to .2.87 Gbps with considerable
variation, giving a Stability Index of 16%. This
could be due to the increase of the total traffic on
the link (~7.5 Gbps upwards). The dramatic drop at
16:32 coincides with the link reaching its 10 Gbps
capacity. The red points from 16:42 to 17:18 show
the throughput using scalable TCP, S-TCP. Initially
the throughput was 3.3 Gbps with a Stability Index
of 8% , similar or slightly better than HS-TCP given
the load on the LA link. Between 17:08 and 17:18 a
second S-TCP flow was started between the same
end hosts. The average of each flow drops to ~1.0
Gbps and the Stability Index increases to 56%. The
sum of the two S-TCP flows was ~1.9 Gbps with a
Stability Index of 39%.The combined rate was less
than that for 1 f low which could be due to the extra
processing required for two flows.

In comparison, Figure 5 shows the TCP user level
throughput to Chicago is quite steady at 3.1 Gbps

with a Stability Index of 1.6%. while to Amsterdam
the throughput is greater at ~4.35 Gbps but less
stable with a Stability Index of 6.9%.The solid line
in Figure 5 shows the total link level traffic from
SC2003 on the Abilene access link, which is about
1Gbps more than the total of the Amsterdam and
Chicago traffic. It is worth noting that the host
providing the flow to Chicago had 2.04GHz CPUs,
while that to Amsterdam had 3.06GHz CPUs, this
may account for the lower throughput recorded.

6.2.2 Tests to PAIX (17ms RTT)
On the Phoenix to PAIX link we used maximum
window sizes of 8MBytes, 16MBytes and
32MBytes7. This bracketed the nominal optimum
window size calculated from the BDP of 17ms *
10Gbps ~ 20MBytes. For the PAIX link, all the
tests were made with a single TCP stream. For
Reno, HS-TCP and S-TCP there was little
observable differences between the four stacks in
the achievable bandwidth behavior.

• For an MTU of 9000Bytes, a window size
of 8MBytes was inadequate and resulted in
throughput being limited to about 2.9Gbps
for Reno single stream, HS-TCP and S-
TCP

• For an MTU of 9000Bytes with window
sizes of 16MBytes or 32MBytes for Reno
single stream, HS-TCP and S-TCP the
throughput increased to about 4.3Gbps.

• The throughputs with an MTU of
9000Bytes were very stable. Typical
values of the Stability Index were < 0.4%.
The larger values for Reno with a single
stream and an 8MByte window and HS-
TCP with a 16MByte window were each
caused by a single sudden drop of
throughput for one 5 second period.

• Reducing the MTU from 9000Bytes to
1500Bytes reduced the throughput for a
16MByte window from 4.3Gbps to about
700Mbps, and for an 8MByte window
from 2.9Gbps to ~ 360Mbps. Also the
throughputs were less stable with the
1500Byte MTU (Stability Index > 10%).

• With an MTU of only 1500Bytes, Fast
TCP gave similar performance to HS-TCP
and STCP when they ran with 1500Byte
MTUs.

7 More explanations are available on: http:
//www-iepm.slac.stanford.edu/monitoring/bulk/
sc2003/hiperf.html and http://www-iepm.slac.
stanford.edu/monitoring/bulk/sc2003/stack-cf.html

 11

The 4.3Gbps limit was slightly less than the ~
5.0Gbps achieved with UDP transfers in the lab at
SLAC between back to back 3.06GHz Dell
PowerEdge 2650 hosts. On the other hand it is less
than that calculated from the expected data transfer
rate for a 10GE NIC with a 64 bit 133 MHz PCI-X
bus[27]. The limitation in throughput is believed to
be due to CPU factors (CPU speed, memory/bus
speed or the I/O chipset). The relative decrease in
throughput going from 9000ByteMTU to a
1500ByteMTU was roughly proportional to the
reduction in MTU size. This maybe related to the
extra CPU power / memory bandwidth required to
process the 6 times as many, but 6 times as small
MTUs. Back to back UDP transfers in the lab at
SLAC between 3.06GHz Dell PowerEdge 2650
hosts achieved about 1.5Gbps or about twice the
700Mbps achieved with the SC03 long distance
TCP transfers. Further work is required to
understand this discrepancy.

7 Future experiments
In the near future, we plan on repeating the tests on
higher speed networks, in particular on the
emerging 10Gbps testbeds. We also plan to test
other promising TCP stacks such as Westwood+,
and rate based protocols such as RBUDP, SABUL
and UDT, and compare their performances with the
TCP based protocols. Also we are planning to work
with others to compare our real network results with
those from simulators such as ns-28

 or emulators
such as Dummynet [23].

In the future, we would like to test a similar
topology as described in [12] where the authors
indicate that it may be beneficial for long RTT
connections to become slightly more aggressive
during the additive increase phase of congestion
avoidance. In this paper we only made cross-traffic
tests with two protocols having the same RTT. It
means that all the senders’ servers were at the same
place. It was the same for the receiver. Thus, we
have to check how each protocol behaves with
different RTTs on the same link. The increase
between the different protocols on the path will be
different and it may affect the fairness.

We should also test the different protocols with
more than one stream to see how aggressive or
gentle a protocol is on this case. Finally, we plan to
test other promising TCP stacks and rate based

8 ”The Network Simulator - ns-2”, available at http://
www.isi.edu/nsnam/ns/

protocol and compare their performance with the
TCP based protocols.

8 Conclusion
In this paper we presented the results of a two-
month experiment to measure the performance of 7
TCPs from SLAC over various network paths. If we
compare the various TCPs for the more important
metrics (throughput achievable, impact on RTT,
aggressiveness, stability and convergence) we
observe for the set of measurements:

• The differences in the performances of the
TCP stacks is more noticeable for the
longer distances.

• TCP Reno single stream, as expected, is
low performance and unstable on longer
distances.

• P-TCP is too aggressive. It is also very
unfair with the RTT on short distance.

• HSTCP-LP is too gentle and, by design,
backs-off. too quickly otherwise it
performs well. It looks very promising to
use to get Less than Best Effort (LBE)
service without requiring network
modifications.

• Fast TCP performs as well as most others
but it is very handicapped by the reverse
traffic.

• S-TCP is very aggressive on middle-
distance and becomes unstable with UDP
traffic on long distance but achieves high
throughput.

• HS-TCP is very gentle and has some
strange intra-fairness behavior.

• Bic-TCP overall performs very well in our
tests.

It is also very important to choose a TCP stack that
works well with and will not decrease the
performance and efficiency of TCP Reno used all
around the world. Moreover, we will always prefer
an advanced TCP which has the recommendation of
the IETF and which will be used by everybody.

Finally, it must be borne in mind that the transport
needs can be very different whether you transfer a
huge amount of data during several minutes or you
need the connection for a one-hour video
conference, or just want to surf the web.

9 Acknowledgements
We would like to thank Jiri Navratil for his
explanations on available bandwidth estimation,

 12

Karl Amrhein, John Goebel, Alf Wachsmann,
Connie Log, Paola Grosso, Warren Matthews and
Chuck Boehiem for their useful help in server and
router administration, all the network
administrators, especially Sylvain Ravot at
CERN/DataTag, Chris Griffin at UFL, Suresh Singh
at Caltech, and Gareth Fairey at Manchester
University, all the kernel developers, especially
Aleksandar Kuzmanovic of HSTCP-LP and Cheng
Jin of Fast TCP, for their insightful comments, Tom
Hacker for the sinusoidal UDP variation idea, and
Saverio Mascolo, Steven Low and Sally Floyd for
discussions on reverse traffic.

10 References
[1] Globus Alliance. Available online: http://
www.globus.org/datagrid/gridftp.html.

[2] D. Chiu and R. Jain. Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks. In Computer Networks and
ISDN Systems, pages 1–14, June 1989.

[3] T. Dunigan.
http://www.csm.ornl.gov/~dunigan/net100/.

[4] G. Farrache. Available online:
http://doc.in2p3.fr/bbftp/.

[5] W. Feng, M. Fisk, M. Gardner, and E. Weigle.
Dynamic right-sizing: An automated, lightweight,
and scalable technique for enhancing grid
performance. In 7th IFIP/IEEE International
Workshop, PfHSN 2002, Berlin, April 2002.

[6] W. Feng, J. Hurwtz, H. Newman, S. Ravot,
R. Les Cottrell, O. Martin, F. Coccetti, C. Jin,
X. Wei, and S. Low. Optimizing 10-gigabit ethernet
for networks of workstations, clusters and grids: A
case study. In Supercomputing Conference 2003,
Phoenix, November 2003.

[7] S. Floyd. Limited slow-start for TCP with
large congestion windows. IETF Internet Draft,
draft-.oyd-tcp-slowstart-01.txt, August 2002.

[8] S. Floyd. HighSpeed TCP for large
congestion windows. IETF Internet Draft, draft-
.oydhighspeed-02.txt, February 2003.

[9] Y. Gu, X. Hong, M. Mazzuci, and R. L.
Grossman. SABUL: A high performance data
transport protocol. IEEE Communications Letters,
2002.

[10] T. Hacker, B. Noble, and B. Athey.
Improving throughput and maintaining fairness
using parall TCP. In Submitted to IEEE
INFOCOM 2004, Hong Kong, 2004.

[11] A. Hanushevsky, A. Trunov, and L.
Cottrell. Peer-to-peer computing for secure
high performance data copying. In Computing in
High Energy Physics, Beijing, 2001.

[12] T. H. Henderson, E. Sahouria, S.
McCanne, and R. H. Katz. On improving the
fairness of TCP congestion avoidance. IEEE
Globecomm conference, 1998.

[13] C. Jin, D. Wei, S. H. Low, G. Bushmaster,
J. Bunn, D. H. Choe, R. L. A Cottrell,
J. C. Doyle, W. Feng, O. Martin, H. Newman,
F. Paganini, S. Ravot, and S. Singh.
FAST TCP: From theory to experiments. In
First International Workshop on Protocols for Fast
Long-Distance Networks (PFLDNet 2003),
Geneva, February 2003.

[14] C. Jin, D. X. Wei, and S. H. Low. FAST
TCP: Motivation, architecture, algorithms,
performance. In IEEE INFOCOM 2004, Hong
Kong, March 2004.

[15] D. Katabi, M. Handley, and C. Rohrs.
Internet congestion control for high
bandwidthdelay product network. In ACM
SIGCOMM, Pittsburgh, August 2002.

[16] T. Kelly. Scalable TCP: Improving
performance in highspeed wide area networks.
Submitted for publication, December 2002.

[17] A. Kuzmanovic and E. W. Knightly.
TCP-LP: A distributed algorithm for low priority
data transfer. In IEEE INFOCOM, San
Francisco, April 2003.

[18] Y. Li. URL:
http://www.hep.ucl.ac.uk/~ytl/tcpip/hstcp/.

[19] Y. Li. URL:
http://www.hep.ucl.ac.uk/~ytl/tcpip/linux/txqueu
elen/.

[20] Saverio Mascolo, Claudio Casetti,
Mario Gerla, M. Y. Sanadidi, and Ren Wang.
TCP westwood: Bandwidth estimation for
enhanced transport over wireless links. In
Mobile Computing and Networking, pages 287–
297, 2001.

 13

[21] Indiana University Advanced Network
Management Lab Tsunami Project. Avalaible
online:
http://www.indiana.edu/~anml/anmlresearch.ht
ml.

[22] S. Ravot. GridDT. In The 1st International
Workshop on Protocols for Fast Long-Distance
Networksd, Geneva, February 2003.
http://sravot.home.cern.ch/sravot/GridDT/GridD
T.htm.

[23] Luigi Rizzo. Dummynet: A simple
approach to the evaluation of network
protocols. ACM Computer Communications
Review, 27(1):31–41, 1997.

[24] R. Shorten, D. Leith, J. Foy, and R. Kildu..
Analysis and design of congestion control in
synchronised communication networks, 2003.

[25] M. Vojnovic, J-Y Le Boudec, and C.
Boutremans. Global fairness of additive-
increase and multiplicative-decrease with
heterogeneous round-trip times. In Proceedings
of IEEE INFOCOM‘2000, pages 1303–1312,
TelAviv, Israel, March 2000.

[26] L. Xu, K. Harfoush, and I. Rhee. Binary
increase congestion Control (BIC) for Fast,
Long-Distance Networks.STo appear in
Infocom 2004, Hongkong, March 2004

[27] R.Hughes-Jones, P. Clarke, S. Dallison and G.
Fairey, Perfrormance of Gigabit and 10 Gigabit
Ethernet NICs with Server Quality Motherboards
Submitted for publication in
High-Speed Networks and Services for Data-
Intensive Grids, Special issue of Future Generation
Computer Systems (FGCS), 2003

[28] Available at:
http://www/hep.uvl.ac.uk/~ytl/tcpip/linux/altaimd/

